论文标题

使用新颖的互补功能面具进行深度选择

Deep Feature Selection Using a Novel Complementary Feature Mask

论文作者

Liao, Yiwen, Rivoir, Jochen, Latty, Raphaël, Yang, Bin

论文摘要

在过去几十年中,功能选择吸引了很多关注,因为它可以降低数据维度,同时保持功能的原始物理含义,这比功能提取可以更好地解释性。但是,大多数现有的功能选择方法,尤其是基于深度学习的方法,通常专注于仅具有很高分数的功能,但忽略了那些在训练过程中得分较低的人以及重要的候选功能的顺序。这可能是有风险的,因为不幸的是,在训练过程中可能会忽略一些重要且相关的功能,从而导致次优的解决方案或误导性选择。在我们的工作中,我们通过利用较少重要性分数的功能来处理功能选择,并根据新颖的互补功能掩码提出一个功能选择框架。我们的方法是通用的,可以轻松地集成到现有的基于深度学习的特征选择方法中,以提高其性能。实验是在基准数据集上进行的,并表明所提出的方法可以选择比艺术状态更多的代表性和信息性特征。

Feature selection has drawn much attention over the last decades in machine learning because it can reduce data dimensionality while maintaining the original physical meaning of features, which enables better interpretability than feature extraction. However, most existing feature selection approaches, especially deep-learning-based, often focus on the features with great importance scores only but neglect those with less importance scores during training as well as the order of important candidate features. This can be risky since some important and relevant features might be unfortunately ignored during training, leading to suboptimal solutions or misleading selections. In our work, we deal with feature selection by exploiting the features with less importance scores and propose a feature selection framework based on a novel complementary feature mask. Our method is generic and can be easily integrated into existing deep-learning-based feature selection approaches to improve their performance as well. Experiments have been conducted on benchmarking datasets and shown that the proposed method can select more representative and informative features than the state of the art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源