论文标题

泊松共形代数的统一和变形量化

Cohomology and deformation quantization of Poisson conformal algebras

论文作者

Liu, Jiefeng, Zhou, Hongyu

论文摘要

在本文中,我们首先回想起(非共同的)泊松子孙代数的概念,并描述了它们的一些结构。然后,我们研究形式分布(非交通性)泊松代数和系数(非共同)代数代数。接下来,我们介绍了交换性缔合代数的形式形式形式的概念,并表明泊松子孙代数是相应的半古典限制。最后,我们开发了非共同泊松形式代数的共同体学理论,并利用该协同学来研究其变形。

In this paper, we first recall the notion of (noncommutative) Poisson conformal algebras and describe some constructions of them. Then we study the formal distribution (noncommutative) Poisson algebras and coefficient (noncommutative) Poisson algebras. Next, we introduce the notion of conformal formal deformations of commutative associative conformal algebras and show that Poisson conformal algebras are the corresponding semi-classical limits. At last, we develop the cohomology theory of noncommutative Poisson conformal algebras and use this cohomology to study their deformations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源