论文标题
通过Noether对称的地球方程整合
Integration of the geodesic equations via Noether Symmetries
论文作者
论文摘要
在本文中,我将概述使用Noether对称方法在讨论用于空间测量lagrangians的地球方程的整合。我还将举一些例子来揭示Noethy对称方法的效率,通过找到与Gödel-type,Schwarzschild,Reissner-Nordström和Kerr SpaceTimes相关的第一个积分。在获得Schwarzschild,Reissner-Nordström和Kerr SpaceTimes的近似Noether对称性之后,已经集成了与每个Noether对称性相关的第一个积分,以根据Arc Length $ s $找到一般的地球方程解决方案。
Through this article, I will overview the use of Noether symmetry approach in discussing the integration of geodesic equations for the geodesic Lagrangians of spacetimes. I will also give some examples to reveal the efficiency of Noether symmetry approach by finding the first integrals related for the geodesic Lagrangians of the Gödel-type, Schwarzschild, Reissner-Nordström and Kerr spacetimes. After obtaining the approximate Noether symmetries of the Schwarzschild, Reissner-Nordström and Kerr spacetimes, the first integrals associated with each of approximate Noether symmetries have been integrated to find a general solution of geodesic equations in terms of the arc length $s$.