论文标题
Khovanov-Rozansky $ \ Mathfrak {sl} _n $ - 原理定期链接
Khovanov-Rozansky $\mathfrak{sl}_N$-homology for periodic links
论文作者
论文摘要
对于$ M $ - 周期链接$ L $,我们表明Khovanov-Rozansky $ \ Mathfrak {Sl} _n $ - 本体学带有$ \ Mathbb {Z} _M $的组合。作为应用程序的一个示例,我们证明了使用$ \ mathfrak {sl} _n $ HOMOLOGY而不是Khovanov同源性的Borodzik-Politarczyk的周期性标准的类似物。
For an $m$-periodic link $L$, we show that the Khovanov-Rozansky $\mathfrak{sl}_N$-homology carries an action of the group $\mathbb{Z}_m$. As an example of applications, we prove an analog of the periodicity criterion of Borodzik--Politarczyk using $\mathfrak{sl}_N$-homology instead of Khovanov homology.