论文标题

内部溶质结构对大分子相互作用的静电场和强耦合方案的影响

Impact of the inner solute structure on the electrostatic mean-field and strong-coupling regimes of macromolecular interactions

论文作者

Buyukdagli, Sahin

论文摘要

涉及生物分子过程的溶质分子的结构多样性需要表征超出点离子描述以外的带电大分子之间的力。从限制在两个阴离子膜之间的电解质的场理论分区函数中,我们得出了一个有效的接触值身份,可用于一般分子内溶质结构和静电耦合强度。在静电场(MF)方向上,溶质颗粒的内电荷扩散显示出诱导短距离Poisson-Boltzmann(PB)的双重增强 - 级别的膜抑制和较长的耗竭吸引力。我们的接触定理表明,溶质大小的双重排斥增强在线性和球形溶质分子的相对强偶联(SC)方面同样存在。在将电解质和相互作用膜之间的介电对比度纳入后,新兴的极化力基本上扩大了大分子相互作用的溶质特异性。也就是说,由相似末端电荷组成的溶质颗粒的有限尺寸(例如腐败分子)削弱了膜间排斥。然而,带有相反基本电荷(例如电离原子和zwitterionic分子)的溶质分子的扩展结构通过几个因素增强了膜排斥。我们还表明,这些极化力可以将溶质结构效应的范围扩展到超过溶质尺寸的膜间距离。盐结构对膜间相互作用的这种根本改变将溶质特异性确定为胶体系统热力学稳定性的关键成分。

The structural diversity of the solute molecules involved in biomolecular processes necessitates the characterization of the forces between charged macromolecules beyond the point-ion description. From the field theoretic partition function of an electrolyte confined between two anionic membranes, we derive a contact-value identity valid for general intramolecular solute structure and electrostatic coupling strength. In the electrostatic mean-field (MF) regime, the inner charge spread of the solute particles is shown to induce the twofold enhancement of the short-range Poisson-Boltzmann (PB)-level membrane repulsion, and a longer-range depletion attraction. Our contact theorem indicates that the twofold repulsion enhancement by solute size is equally present in the opposite strong-coupling (SC) regime of linear and spherical solute molecules. Upon the inclusion of the dielectric contrast between the electrolyte and the interacting membranes, the emerging polarization forces substantially amplify the solute specificity of the macromolecular interactions. Namely, the finite size of the solute particles composed of similar terminal charges such as putrescine molecules weaken the intermembrane repulsion. However, the extended structure of the solute molecules carrying opposite elementary charges such as ionized atoms and zwitterionic molecules enhance the membrane repulsion by several factors. We also show that these polarization forces can extend the range of the solute structure effects up to intermembrane distances exceeding the solute size by an order of magnitude. This radical alteration of the intermembrane interactions by the salt structure identifies the solute specificity as a key ingredient of the thermodynamic stability in colloidal systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源