论文标题

绕过球体上过度接口的正交精确性假设

Bypassing the quadrature exactness assumption of hyperinterpolation on the sphere

论文作者

An, Congpei, Wu, Hao-Ning

论文摘要

本文着重于通过高度接口的球形多项式$ n $的球形多项式在单位球上连续函数的近似值。学位$ n $的高度中间可以与$ l^2 $ - 正交$ n $的正交投影与其傅立叶系数进行的傅立叶系数进行离散近似,该系数由正重的正交规则进行了评估,该系数完全整合了最多$ 2N $的所有球形多项式学位。本文的目的是通过将其用Marcinkiewicz-Zygmund属性代替上一篇论文中提出的Marcinkiewicz-Zygmund属性来绕过这种正常的精确性假设。因此,可以通过积极的正交规则(不一定具有正交精确性)来构建高音中间。该方案称为不受限制的超中断。本文为不受约束的高中间填充提供了合理的错误估计。误差估计通常由两个术语组成:一个术语,表示完全正交精确性的原始过度中断的误差估计,而另一个则作为对精确度损失的补偿。在实践中提供了控制新引入术语的指南。特别是,如果正交点形成了准蒙特卡洛(QMC)设计,则会有一个精制的误差估计值。数值实验验证了误差估计和实际指南。

This paper focuses on the approximation of continuous functions on the unit sphere by spherical polynomials of degree $n$ via hyperinterpolation. Hyperinterpolation of degree $n$ is a discrete approximation of the $L^2$-orthogonal projection of degree $n$ with its Fourier coefficients evaluated by a positive-weight quadrature rule that exactly integrates all spherical polynomials of degree at most $2n$. This paper aims to bypass this quadrature exactness assumption by replacing it with the Marcinkiewicz--Zygmund property proposed in a previous paper. Consequently, hyperinterpolation can be constructed by a positive-weight quadrature rule (not necessarily with quadrature exactness). This scheme is referred to as unfettered hyperinterpolation. This paper provides a reasonable error estimate for unfettered hyperinterpolation. The error estimate generally consists of two terms: a term representing the error estimate of the original hyperinterpolation of full quadrature exactness and another introduced as compensation for the loss of exactness degrees. A guide to controlling the newly introduced term in practice is provided. In particular, if the quadrature points form a quasi-Monte Carlo (QMC) design, then there is a refined error estimate. Numerical experiments verify the error estimates and the practical guide.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源