论文标题
通过纯骨扩展检测纠缠
Detecting Entanglement by Pure Bosonic Extension
论文作者
论文摘要
在量子信息理论的领域中,量子纠缠的检测和量化是最重要的任务。纠缠(REE)的相对熵是纠缠的重要度量,广泛的应用涵盖了许多相关领域。不幸的是,在处理绑定的纠缠时,阳性部分转置标准(PPT)标准为REE的计算提供了有效的计算方法。在这项研究中,我们提出了一种称为“纯波子扩展”的方法,以增强$ k $ - 博体扩展的实用性,该扩展近似于“外部”,通过层次结构近似于“外部”。它可以有效地表征$ k $ - bobosonic Extensible状态,从而促进了REE准确的下限。与半准编程(SDP)方法相比,例如QetLab中的对称/波体扩展功能,我们的算法支持更大的维度和更高的扩展$ K $值。
In the realm of quantum information theory, the detection and quantification of quantum entanglement stand as paramount tasks. The relative entropy of entanglement (REE) serves as a prominent measure of entanglement, with extensive applications spanning numerous related fields. The positive partial transpose (PPT) criterion, while providing an efficient method for the computation of REE, unfortunately, falls short when dealing with bound entanglement. In this study, we propose a method termed "pure bosonic extension" to enhance the practicability of $k$-bosonic extensions, which approximates the set of separable states from the "outside", through a hierarchical structure. It enables efficient characterization of the set of $k$-bosonic extendible states, facilitating the derivation of accurate lower bounds for REE. Compared to the Semi-Definite Programming (SDP) approach, such as the symmetric/bosonic extension function in QETLAB, our algorithm supports much larger dimensions and higher values of extension $k$.