论文标题
水文氘富集在火星上的原始大气起源
A primordial atmospheric origin of hydrospheric deuterium enrichment on Mars
论文作者
论文摘要
火星大气水(〜6倍平均海水,SMOW)的氘与氢(D/H或2H/1H)的比率高于已知来源,需要行星富集。 NASA的MARS Science Laboratory Rover的好奇心> 3 Gyr粘土的最新测量结果〜3倍SMOW,表明大多数富集发生在火星历史早期。与维纳斯一样,火星的D/H富集被认为反映了相对于2H(氘)的1H(protium)空间的优先损失,但是大型和早期氢损失的全球环境环境仍有待确定。在这里,我们将最新的原始大气进化模型应用于火星,将增生时期的岩浆海洋与随后的水海洋时代联系起来,并计算氘的行为,以与观察到的记录进行比较。我们发现,如果火星岩浆海洋最终与原始气氛进行化学降低,则会产生〜2-3X水圈氘化的浓度,从而使H2-CO成为最初具有较小的H2O-CO2的h2-co。减少气体 - 尤其是H2-可能会导致温室变暖,并防止在岩浆海洋时代后立即冷冻水海洋。此外,压力温度的条件足够高,可以产生海洋 - 大气H2O-H2同位素平衡,从而相对于H2,表面H2O强烈浓缩氘,这优先吸收了Protium并从原始大气中逃脱。提出的原始H2富含量和逃生的方案表明,在火星增生后立即有利于益生元化学的火星表面上的化学条件持续时间(> myr)。
The deuterium-to-hydrogen (D/H or 2H/1H) ratio of Martian atmospheric water (~6x standard mean ocean water, SMOW) is higher than that of known sources, requiring planetary enrichment. A recent measurement by NASA's Mars Science Laboratory rover Curiosity of >3 Gyr clays yields a D/H ratio ~3x SMOW, demonstrating that most enrichment occurs early in Mars's history. As on Venus, Mars's D/H enrichment is thought to reflect preferential loss to space of 1H (protium) relative to 2H (deuterium), but the global environmental context of large and early hydrogen losses remain to be determined. Here, we apply a recent model of primordial atmosphere evolution to Mars, link the magma ocean of the accretion epoch with a subsequent water-ocean epoch, and calculate the behavior of deuterium for comparison with the observed record. We find that a ~2-3x hydrospheric deuterium-enrichment is produced if the Martian magma ocean is chemically reducing at last equilibration with the primordial atmosphere, making H2-CO the initially dominant species, with minor abundances of H2O-CO2. Reducing gases - in particular H2 - can cause greenhouse warming and prevent a water ocean from freezing immediately after the magma ocean epoch. Moreover, the pressure-temperature conditions are high enough to produce ocean-atmosphere H2O-H2 isotopic equilibrium such that surface H2O strongly concentrates deuterium relative to H2, which preferentially takes up protium and escapes from the primordial atmosphere. The proposed scenario of primordial H2-rich outgassing and escape suggests significant durations (>Myr) of chemical conditions on the Martian surface conducive to prebiotic chemistry immediately following Martian accretion.