论文标题
嵌入可量化的伪-Kähler歧管的定理
Embedding theorems for quantizable pseudo-Kähler manifolds
论文作者
论文摘要
给定一个可定量的伪kähler歧管$(m,ω)$的恒定签名,在$-2πi\,ω$的$ m $上存在Hermitian Line Bundle $(l,h)$(l,h)$。我们将表明,伯格曼内核的渐近扩展以$ l^{\ otimes k} $ - 估价$(0,q)$ - 形式或多或少地暗示着或多或少的类似物的许多众所周知的结果,例如Kodaira嵌入了Theorem和Tian的几乎是Ins-MorneTry-ismentry-nistry-normentry Theorem。
Given a compact quantizable pseudo-Kähler manifold $(M,ω)$ of constant signature, there exists a Hermitian line bundle $(L,h)$ over $M$ with curvature $-2πi\,ω$. We shall show that the asymptotic expansion of the Bergman kernels for $L^{\otimes k}$-valued $(0,q)$-forms implies more or less immediately a number of analogues of well-known results, such as Kodaira embedding theorem and Tian's almost-isometry theorem.