论文标题

极端八角形连锁基座指数

Extremal octagonal chains with respect to the Kirchhoff index

论文作者

Ma, Qi

论文摘要

令$ g $为连接的图。 $ g $的任意两个顶点之间的电阻距离等于通过用单位电阻代替每个边缘来构建的相应电网中它们之间的有效电阻。 Kirchhoff指数定义为所有对顶点之间的电阻距离之和。这些指数已经计算出许多有趣的图形,例如线性多支台链,线性/möbius/圆柱六边形链,以及线性/möbius/圆柱八角形链。在本文中,我们表征了相对于Kirchhoff指数的最大和最小八角形链。

Let $G$ be a connected graph. The resistance distance between any two vertices of $G$ is equal to the effective resistance between them in the corresponding electrical network constructed from $G$ by replacing each edge with a unit resistor. The Kirchhoff index is defined as the sum of resistance distances between all pairs of the vertices. These indices have been computed for many interesting graphs, such as linear polyomino chain, linear/Möbius/cylinder hexagonal chain, and linear/Möbius/cylinder octagonal chain. In this paper, we characterized the maximum and minimum octagonal chains with respect to the Kirchhoff index.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源