论文标题
色球温度对冠状加热的影响
The Effect of the Chromospheric Temperature on Coronal Heating
论文作者
论文摘要
最近的观察和数值研究表明,太阳染色体中的各种热结构。鉴于整个过渡区域的热相互作用是冠状加热的关键,因此值得研究染色体的不同热结构如何产生不同的冠状特性。在这项工作中,通过MHD模拟冠状环的Alfvén波加热,我们研究了冠状特性如何受染色体温度影响。为此,我们使用简单的辐射损失函数,而不是求解辐射传递方程,以便轻松调节色圈温度。当染色体变热时,由于染色体延伸到更大的高度,磁环的冠状部分变短,从而增强了导电冷却。因此,需要更大的环长度以维持针对热传导的高温电晕。从我们的数值模拟中,我们以简单的形式得出了相对于半环长$ l _ {\ rm loop} $的冠状形成条件:$ l _ {\ rm loop}> a t _ {\ rm min} $ a $和$ l _ {\ rm th} $对冠状场强度具有负依赖性。我们的结论是,色层温度对长度较小且冠状场较弱的环的冠状加热具有不可忽略的影响。特别是,增强的色球加热可以防止表现力的形成。
Recent observational and numerical studies show a variety of thermal structures in the solar chromosphere. Given that the thermal interplay across the transition region is a key to coronal heating, it is worth investigating how different thermal structures of the chromosphere yield different coronal properties. In this work, by MHD simulations of Alfvén-wave heating of coronal loops, we study how the coronal properties are affected by the chromospheric temperature. To this end, instead of solving the radiative transfer equation, we employ a simple radiative loss function so that the chromospheric temperature is easily tuned. When the chromosphere is hotter, because the chromosphere extends to a larger height, the coronal part of the magnetic loop becomes shorter, which enhances the conductive cooling. A larger loop length is therefore required to maintain the high-temperature corona against the thermal conduction. From our numerical simulations we derive a condition for the coronal formation with respect to the half loop length $l_{\rm loop}$ in a simple form: $l_{\rm loop} > a T_{\rm min} + l_{\rm th}$, where $T_{\rm min}$ is the minimum temperature in the atmosphere and parameters $a$ and $l_{\rm th}$ have negative dependencies on the coronal field strength. Our conclusion is that the chromospheric temperature has a non-negligible impact on coronal heating for loops with small length and weak coronal field. In particular, the enhanced chromospheric heating could prevent the formation of the corona.