论文标题
审查水下对象检测的深度学习技术
Review On Deep Learning Technique For Underwater Object Detection
论文作者
论文摘要
水下结构的维修和维护以及海洋科学在很大程度上依赖于水下对象检测的结果,这是图像处理工作流程的关键部分。尽管已经提出了许多基于计算机视觉的方法,但还没有人开发出一种可靠,准确地检测并对深海中发现的物体和动物进行分类的系统。这主要是由于障碍物在水下环境中散射和吸收光线。随着深度学习的引入,科学家已经能够解决广泛的问题,包括保护海洋生态系统,在紧急情况下挽救生命,防止水下灾难,并发现,吐口水和识别水下目标。但是,这些深度学习系统的好处和缺点仍然未知。因此,本文的目的是提供在水下对象检测中使用的数据集的概述,并介绍为此目的所采用的算法的优势和缺点的讨论。
Repair and maintenance of underwater structures as well as marine science rely heavily on the results of underwater object detection, which is a crucial part of the image processing workflow. Although many computer vision-based approaches have been presented, no one has yet developed a system that reliably and accurately detects and categorizes objects and animals found in the deep sea. This is largely due to obstacles that scatter and absorb light in an underwater setting. With the introduction of deep learning, scientists have been able to address a wide range of issues, including safeguarding the marine ecosystem, saving lives in an emergency, preventing underwater disasters, and detecting, spooring, and identifying underwater targets. However, the benefits and drawbacks of these deep learning systems remain unknown. Therefore, the purpose of this article is to provide an overview of the dataset that has been utilized in underwater object detection and to present a discussion of the advantages and disadvantages of the algorithms employed for this purpose.