论文标题
从部分观察的轨迹中学习驱动的Koopman发电机的双线性模型
Learning Bilinear Models of Actuated Koopman Generators from Partially-Observed Trajectories
论文作者
论文摘要
基于近似基础的Koopman操作员或发电机的数据驱动的非线性动力学系统模型已被证明是预测,功能学习,状态估计和控制的成功工具。众所周知的是,用于控制膜系统的Koopman发电机还对输入具有仿射依赖性,从而导致动力学的方便有限维双线性近似。然而,仍然存在两个主要障碍,这些障碍限制了当前方法的范围,以逼近驱动系统的koopman发电机。首先,现有方法的性能在很大程度上取决于要近似Koopman Generator的基础函数的选择;目前,目前尚无通用方法来为无法衡量保存的系统选择它们。其次,如果我们不观察到完整的状态,那么在构造可观察到的近似Koopman运算符时,有必要考虑输出时间序列对所提供输入顺序的依赖性。为了解决这些问题,我们将Koopman Generator控制的可观察到的动力学写为双线性隐藏Markov模型,并使用期望 - 最大化(EM)算法确定模型参数。 E-Step涉及标准的Kalman滤波器和更光滑的,而M-Step类似于发电机的控制疗法动态模式分解。我们在三个示例上证明了该方法的性能,包括恢复具有缓慢歧管的驱动系统的有限维koopman-invariant子空间;估计非强制性行驶方程的Koopman本征函数;仅基于提升和阻力的嘈杂观察,对流体弹球系统的模型预测控制。
Data-driven models for nonlinear dynamical systems based on approximating the underlying Koopman operator or generator have proven to be successful tools for forecasting, feature learning, state estimation, and control. It has become well known that the Koopman generators for control-affine systems also have affine dependence on the input, leading to convenient finite-dimensional bilinear approximations of the dynamics. Yet there are still two main obstacles that limit the scope of current approaches for approximating the Koopman generators of systems with actuation. First, the performance of existing methods depends heavily on the choice of basis functions over which the Koopman generator is to be approximated; and there is currently no universal way to choose them for systems that are not measure preserving. Secondly, if we do not observe the full state, then it becomes necessary to account for the dependence of the output time series on the sequence of supplied inputs when constructing observables to approximate Koopman operators. To address these issues, we write the dynamics of observables governed by the Koopman generator as a bilinear hidden Markov model, and determine the model parameters using the expectation-maximization (EM) algorithm. The E-step involves a standard Kalman filter and smoother, while the M-step resembles control-affine dynamic mode decomposition for the generator. We demonstrate the performance of this method on three examples, including recovery of a finite-dimensional Koopman-invariant subspace for an actuated system with a slow manifold; estimation of Koopman eigenfunctions for the unforced Duffing equation; and model-predictive control of a fluidic pinball system based only on noisy observations of lift and drag.