论文标题

紧凑表面和光滑线性光谱统计的随机覆盖物

Random covers of compact surfaces and smooth linear spectral statistics

论文作者

Naud, Frédéric

论文摘要

我们考虑随机的n-covers $ x_n $的任意紧凑双曲表面$ x $。我们表明,在较大的N型和小窗口限制中,laplacian的平滑光谱统计差异被统一的阿贝尔角色扭曲,遵守GOE和GUE随机​​矩阵的普遍定律,取决于角色保留或打破时间反向对称性。我们还证明了在紧凑型线性基团中价值的更高维曲折的概括。这些结果证实了浆果的猜想,并且是鲁德尼克最近作品的Weil-Petersson随机表面模型的离散类似物。

We consider random n-covers $X_n$ of an arbitrary compact hyperbolic surface $X$. We show that in the large n regime and small window limit, the variance of the smooth spectral statistics of the Laplacian twisted by a unitary abelian character, obey the universal laws of GOE and GUE random matrices, depending on wether the character preserves or breaks the time reversal symmetry. We also prove a generalization for higher dimensional twists valued in compact linear groups. These results confirm a conjecture of Berry and is a discrete analog of a recent work of Rudnick for the Weil-Petersson model of random surfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源