论文标题
关于使用状态线性方程的相对论完美流体的稳定性$ p =kρ$其中$ 1/3 <k <1 $
On the stability of relativistic perfect fluids with linear equations of state $p=Kρ$ where $1/3<K<1$
论文作者
论文摘要
对于$ 1/3 <k <1 $,我们考虑了两个不同的空间均匀解决方案对相对论欧拉方程的稳定性,该方程具有线性方程式$ p =kρ$,呈指数扩展的flrw spaceTimes。这两个家庭的区别是一个在空间上是各向同性的,而另一个则不是。我们确定了非各向异性家族的非线性扰动的未来稳定性,用于全部参数值$ 1/3 <k <1 $,这改善了第二作者建立的先前稳定性结果,要求$ k $在有限的范围内$(1/3,1/2)$。作为理解各向同性家族非线性扰动行为的第一步,我们在$ \ mathbb {t}^2 $ - s-symmetry假设下构建了相对论欧拉方程的数值解决方案。这些解决方案是从固定时间从初始数据生成的,该数据被选为适当接近各向同性溶液的初始数据。我们的数值结果表明,对于完整的参数范围$ 1/3 <k <1 $,密度对比度$ \ frac {\ partial_ {x}ρ}ρ$与各向同性溶液的非线性扰动相关的相关,从而在未来的Infitions上脱颖而出,在未来的稳定点上,陡峭的梯度在陡峭的点上产生了陡峭的梯度。 Rendall在\ cite {Rendall:2004}中预期的这种行为特别有趣,因为它与宇宙学中通货膨胀的标准图片不一致。
For $1/3<K<1$, we consider the stability of two distinct families of spatially homogeneous solutions to the relativistic Euler equations with a linear equation of state $p=Kρ$ on exponentially expanding FLRW spacetimes. The two families are distinguished by one being spatially isotropic while the other is not. We establish the future stability of nonlinear perturbations of the non-isotropic family for the full range of parameter values $1/3<K<1$, which improves a previous stability result established by the second author that required $K$ to lie in the restricted range $(1/3,1/2)$. As a first step towards understanding the behaviour of nonlinear perturbations of the isotropic family, we construct numerical solutions to the relativistic Euler equations under a $\mathbb{T}^2$-symmetry assumption. These solutions are generated from initial data at a fixed time that is chosen to be suitably close to the initial data of an isotropic solution. Our numerical results reveal that, for the full parameter range $1/3<K<1$, the density contrast $\frac{\partial_{x}ρ}ρ$ associated to a nonlinear perturbation of an isotropic solution develops steep gradients near a finite number of spatial points where it becomes unbounded at future timelike infinity. This behaviour, anticipated by Rendall in \cite{Rendall:2004}, is of particular interest since it is not consistent with the standard picture for inflation in cosmology.