论文标题

光学探测菱形堆积MOS2双层中的不对称层间耦合

Optically probing the asymmetric interlayer coupling in rhombohedral-stacked MoS2 bilayer

论文作者

Liang, Jing, Yang, Dongyang, Wu, Jingda, Dadap, Jerry I, Watanabe, Kenji, Taniguchi, Takashi, Ye, Ziliang

论文摘要

层间耦合正在作为调整二维(2D)范德华材料的物理特性的新参数。当两个相同的半导体单层堆叠成一个扭角时,由于Moiré超晶格引起的周期性夹层耦合调制可能会赋予异国情调的物理现象,例如Moiré激子和相关的电子相。为了深入了解这些新现象,至关重要的是要揭示原子层之间的基本耦合。最近,由于非授权单层成分的平面外极化,菱形堆叠的过渡金属二北元(TMD)双层均引起了重大兴趣。但是,作为负责物理特性的关键参数,层间耦合及其与铁电性的关系仍然难以捉摸。在这里,我们在3R-MOS2双层中探测了一层的导带和另一层的价带之间的不对称层间耦合,这可以理解,这是由于层依赖性浆果相位绕组的结果。通过在双门配设备中执行光谱法,我们显示了3R-MOS2双层中的K点的I型带对齐。此外,通过揭示对频带偏移的各种贡献,我们定量确定3R-MOS2中的不对称层间耦合和自发极化。

The interlayer coupling is emerging as a new parameter for tuning the physical properties of two-dimensional (2D) van der Waals materials. When two identical semiconductor monolayers are stacked with a twist angle, the periodic interlayer coupling modulation due to the moiré superlattice may endow exotic physical phenomena, such as moiré excitons and correlated electronic phases. To gain insight into these new phenomena, it is crucial to unveil the underlying coupling between atomic layers. Recently, the rhombohedral-stacked transition metal dichalcogenide (TMD) bilayer has attracted significant interest because of the emergence of an out-of-plane polarization from non-ferroelectric monolayer constituents. However, as a key parameter responsible for the physical properties, the interlayer coupling and its relationship with ferroelectricity in them remain elusive. Here we probe the asymmetric interlayer coupling between the conduction band of one layer and the valence band from the other layer in a 3R-MoS2 bilayer, which can be understood as a result of a layer-dependent Berry phase winding. By performing optical spectroscopy in a dual-gated device, we show a type-II band alignment exists at K points in the 3R-MoS2 bilayer. Furthermore, by unraveling various contributions to the band offset, we quantitatively determine the asymmetric interlayer coupling and spontaneous polarization in 3R-MoS2.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源