论文标题

节点连接增强问题的参数化算法

Parameterized algorithms for node connectivity augmentation problems

论文作者

Nutov, Zeev

论文摘要

图形$ g $是$ k $ out与节点$ s $连接的,如果它包含$ k $内部脱节$ sv $ path-与每个节点$ v $ s。 $ g $是$ k $连接的,如果是$ k $ - 与每个节点连接。在连接性增强问题中,目标是通过最低成本edge Edge设置$ J $增加图形$ g_0 =(v,e_0)$,这样$ g_0 \ cup j $的连接性高于$ g_0 $。在$ k $ - out连接性增强($ k $ -oca)问题中,$ g_0 $是$(k-1)$ - 与$ s $相关,$ s $和$ g_0 \ cup j $应该是$ k $ - 与$ s $连接;在$ k $ - 连接性增强($ k $ -ca)中问题$ g_0 $ is $(k-1)$ - 连接,$ g_0 \ cup j $应该为$ k $ - 连接。这些问题的参数化复杂性状态即使是$ k = 3 $和单位成本也开放。我们将证明$ K $ -OCA和$ 3 $ -CA可以在时间$ 9^p \ cdot n^{o(1)} $中解决,其中$ p $是最佳解决方案的大小。我们的论文是第一个显示$ k $ - 节点连接性增强问题的固定参数障碍性,高值为$ k $。我们还将考虑$(2,k)$ - 连接增强问题,其中$ g_0 $是$(k-1)$ - 边缘连接,$ g_0 \ cup j $应该是$ k $ - 边缘连接和$ 2 $连接的。我们将证明可以在$ 9^p \ cdot n^{o(1)} $的时间内解决此问题,并且单位费用约为$ 1.892 $。

A graph $G$ is $k$-out-connected from its node $s$ if it contains $k$ internally disjoint $sv$-paths to every node $v$; $G$ is $k$-connected if it is $k$-out-connected from every node. In connectivity augmentation problems the goal is to augment a graph $G_0=(V,E_0)$ by a minimum costs edge set $J$ such that $G_0 \cup J$ has higher connectivity than $G_0$. In the $k$-Out-Connectivity Augmentation ($k$-OCA) problem, $G_0$ is $(k-1)$-out-connected from $s$ and $G_0 \cup J$ should be $k$-out-connected from $s$; in the $k$-Connectivity Augmentation ($k$-CA) problem $G_0$ is $(k-1)$-connected and $G_0 \cup J$ should be $k$-connected. The parameterized complexity status of these problems was open even for $k=3$ and unit costs. We will show that $k$-OCA and $3$-CA can be solved in time $9^p \cdot n^{O(1)}$, where $p$ is the size of an optimal solution. Our paper is the first that shows fixed parameter tractability of a $k$-node-connectivity augmentation problem with high values of $k$. We will also consider the $(2,k)$-Connectivity Augmentation problem where $G_0$ is $(k-1)$-edge-connected and $G_0 \cup J$ should be both $k$-edge-connected and $2$-connected. We will show that this problem can be solved in time $9^p \cdot n^{O(1)}$, and for unit costs approximated within $1.892$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源