论文标题
挤压$ f _ {\ rm nl} $从Biseptrum和一致性关系中
Squeezing $f_{\rm NL}$ out of the matter bispectrum with consistency relations
论文作者
论文摘要
我们展示了如何使用一致性关系来鲁棒地提取局部原始非高斯性($ f _ {\ rm nl} $)的幅度,从bispectrum的挤压限制中,远高于非线性制度。首先,我们得出了原始非高斯性与挤压双光谱中的主要术语之间的非扰动关系,并修改了文献中存在的一些结果。然后,该关系用于从$ n $ body模拟中成功测量$ f _ {\ rm nl} $。我们讨论结果对不同规模削减和红移的依赖性。具体而言,该分析在很大程度上取决于最小的柔软动量,$ q _ {\ rm min} $,这是对原始双光谱贡献最敏感的,但由于非gaussian的covariancience,由于非gaussian covariancience。我们还展示了$ f _ {\ rm nl} $上的约束如何在更高的红移时改进,这是由于降低了偏置协方差。 In particular, for a simulation with $f_{\rm NL} = 100$ and a volume of $(2.4 \text{ Gpc}/h)^3$, we measure $f_{\rm NL} = 98 \pm 12$ at redshift $z=0$ and $f_{\rm NL} = 97 \pm 8$ at $z=0.97$.最后,我们将结果与Fisher的预测进行了比较,这表明当前的分析版本令人满意地接近Fisher错误。我们认为这是朝着一致性关系实现现实应用来限制原始非高斯的第一步。
We show how consistency relations can be used to robustly extract the amplitude of local primordial non-Gaussianity ($f_{\rm NL}$) from the squeezed limit of the matter bispectrum, well into the non-linear regime. First, we derive a non-perturbative relation between primordial non-Gaussianity and the leading term in the squeezed bispectrum, revising some results present in the literature. This relation is then used to successfully measure $f_{\rm NL}$ from $N$-body simulations. We discuss the dependence of our results on different scale cuts and redshifts. Specifically, the analysis is strongly dependent on the choice of the smallest soft momentum, $q_{\rm min}$, which is the most sensitive to primordial bispectrum contributions, but is largely independent of the choice of the largest hard momentum, $k_{\rm max}$, due to the non-Gaussian nature of the covariance. We also show how the constraints on $f_{\rm NL}$ improve at higher redshift, due to a reduced off-diagonal covariance. In particular, for a simulation with $f_{\rm NL} = 100$ and a volume of $(2.4 \text{ Gpc}/h)^3$, we measure $f_{\rm NL} = 98 \pm 12$ at redshift $z=0$ and $f_{\rm NL} = 97 \pm 8$ at $z=0.97$. Finally, we compare our results with a Fisher forecast, showing that the current version of the analysis is satisfactorily close to the Fisher error. We regard this as a first step towards the realistic application of consistency relations to constrain primordial non-Gaussianity using observations.