论文标题

热力学转化的热力学方法作为多分散溶液中的逮捕过渡

Thermodynamic approach to liquid-to-glass transformation as an arrest transition in polydisperse solution

论文作者

Belostotsky, Vladimir

论文摘要

提出了热力学多组分解决方案固化方法,提出了液态到玻璃转换的方法,除了粘性放缓以外,除了粘性放缓之外,实际机制。由于液态的多分散聚集,无论化学成分如何,玻璃形成的液体似乎是各种准元素的混合物,其热力学量不得以实际的化学成分的摩尔浓度来表示,而是根据实际的化学成分的摩尔浓度,而是在相对浓度的相对浓度方面表达。从热力学上讲,任何玻璃形式都可以作为多组分溶液的表现,并在明显的液态液体和固相温度之间的连续温度范围内固化,这些温度可以识别为玻璃转换范围。使用多分散溶液的扩展不可逆的热力学,证明在淬火,扩散和布朗在这种溶液中的扩散和布朗质量转运在热量去除时间表中被否定,从而导致包子的成核和生长动力停滞,并在固定相分离中生长。快速解决方案固化通过连续温度范围内连续的聚类冻结进行,与簇大小分散性一致,可以用静态多分散分形集合中的渗透来描述,其中玻璃过渡温度自然出现为渗透阈值。多组分解决方案固化框架显示与模式耦合 - 随机一阶过渡方案是可对帐的。最后,证明了液体对玻璃的转化是热力学液体到固体相变,物质的玻璃状态似乎是固体在原本完美矩阵中缺陷的实心溶液,而玻璃无法进入的真正平衡结构是结晶的。

Thermodynamic multi-component solution solidification approach to liquid-to-glass transition is proposed and actual mechanisms underlying vitrification, other than viscous slowdown, are identified. Due to polydisperse aggregation in liquid state, glass-forming liquids, irrespective of chemical composition, appear to be mixtures of various quasi-components whose thermodynamic quantities shall be expressed not in terms of molar concentrations of actual chemical components, but in terms of relative concentrations of dominant structural units. Thermodynamically, any glass-former is expected to behave as multi-component solution and solidify in continuous temperature range between apparent liquidus and solidus temperatures that can be identified as glass-transition range. Using extended irreversible thermodynamics of polydisperse solutions it is demonstrated that upon quenching, diffusional and Brownian mass transport in such solutions is negated within heat removal timescale, which results in dynamical arrest of nucleation and growth in clusters and solid-liquid phase separation. Rapid solution solidification proceeds via successive cluster freezing in continuous temperature range, in line with cluster size dispersity, which can be described in terms of percolation in static polydisperse fractal ensemble where glass transition temperature naturally emerges as percolation threshold. Multi-component solution solidification framework is shown to be reconcilable qualitatively and quantitatively with the Mode Coupling - Random First Order Transition scenario. Finally, it is demonstrated that liquid-to-glass transformation is thermodynamic liquid-to-solid phase transition, glassy state of matter appears to be solid supersaturated solution of defects in otherwise perfect matrix, and the true equilibrium structure which glass is unable access is a crystalline one.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源