论文标题
非还原空间上$ \ bar \ part $ quar的规范估计值
Norm estimates for the $\bar\partial$-equation on a non-reduced space
论文作者
论文摘要
我们研究了非还原分析空间的$ \ bar \ partial $方程式的规范估计。我们的主要结果是,在非还原分析空间上,即Cohen-Macaulay,其基本缩小空间是平稳的,可以用$(0,1)$的$ \ bar \ partial $ - equ- equ-equation-equient $(0,1)$ - 可以用$ l^p $ - 示例来解决。
We study norm-estimates for the $\bar\partial$-equation on non-reduced analytic spaces. Our main result is that on a non-reduced analytic space, which is Cohen-Macaulay and whose underlying reduced space is smooth, the $\bar\partial$-equation for $(0,1)$-forms can be solved with $L^p$-estimates.