论文标题

多参数上层模型中随机简单复合物的同源性

The homology of random simplicial complexes in the multi-parameter upper model

论文作者

Farber, Michael, Nowik, Tahl

论文摘要

我们研究多参数上层模型中的随机简单复合物。在此模型中,各个维度的简单是随机和独立进行的,然后将我们的随机简单复杂$ y $ $ $ $ $ y $ y $ y $,然后是包含此简单集合的最小简单综合体。 我们研究了$ y $的同源性的渐近行为,因为顶点数量为$ \ infty $。我们几乎可以肯定地渐近地观察到以下现象。采用简单的给定概率确定一系列尺寸$ \ ell \ ell \ leq k \ leq \ ell'$带有$ \ ell'\ leq 2 \ ell +1 $,在其同源$ y $ nasishes之外。在此范围内,同源物从维度到维度大大减少。特别是,关键维度$ \ ell $中的同源性是最大的。

We study random simplicial complexes in the multi-parameter upper model. In this model simplices of various dimensions are taken randomly and independently, and our random simplicial complex $Y$ is then taken to be the minimal simplicial complex containing this collection of simplices. We study the asymptotic behavior of the homology of $Y$ as the number of vertices goes to $\infty$. We observe the following phenomenon asymptotically almost surely. The given probabilities with which the simplices are taken determine a range of dimensions $\ell \leq k \leq \ell'$ with $\ell' \leq 2\ell +1$, outside of which the homology of $Y$ vanishes. Within this range, the homologies diminish drastically from dimension to dimension. In particular, the homology in the critical dimension $\ell$ is significantly the largest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源