论文标题

时间周期系统的最佳汉密尔顿模拟

Optimal Hamiltonian simulation for time-periodic systems

论文作者

Mizuta, Kaoru, Fujii, Keisuke

论文摘要

随时间进化运算符$ u(t)$的实施,称为哈密顿模拟,是量子计算机最有前途的用法之一。对于时间不依赖时间的哈密顿人,Qubitization最近建立了时间进步$ u(t)= E^{ - IHT} $的有效实现,并实现了最佳的计算资源$ t $和允许的错误$ \ varepsilon $。相比之下,由于时间依赖时间依赖性的困难,与时间相关系统的系统需要更大的成本。在本文中,我们为具有时间周期性的通用时间依赖性系统建立了最佳/几乎最佳的哈密顿模拟,称为Floquet Systems。通过使用配备辅助状态标记傅立叶指数的所谓浮雕 - 希尔伯特空间,我们开发了一种方法,可以肯定地获得目标时间发展状态,而无需依赖时间订购的产品或Dyson-series扩展。因此,衡量实施时间进化的成本的查询复杂性在时间$ t $和反向错误$ \ varepsilon $中分别具有最佳且几乎是最佳的依赖性,并且足够接近Qubitization。因此,我们的协议告诉我们,在通用时间依赖性系统中,时间周期系统可以像时间依赖性一样有效地像时间无关的系统一样有效地访问类。由于我们还为模拟非平衡现象和绝热状态制备提供了应用,我们的结果将揭示凝结物理物理和量子化学中的非平衡现象,以及在量子计算中产生时间依赖性的量子任务。

The implementation of time-evolution operators $U(t)$, called Hamiltonian simulation, is one of the most promising usage of quantum computers. For time-independent Hamiltonians, qubitization has recently established efficient realization of time-evolution $U(t)=e^{-iHt}$, with achieving the optimal computational resource both in time $t$ and an allowable error $\varepsilon$. In contrast, those for time-dependent systems require larger cost due to the difficulty of handling time-dependency. In this paper, we establish optimal/nearly-optimal Hamiltonian simulation for generic time-dependent systems with time-periodicity, known as Floquet systems. By using a so-called Floquet-Hilbert space equipped with auxiliary states labeling Fourier indices, we develop a way to certainly obtain the target time-evolved state without relying on either time-ordered product or Dyson-series expansion. Consequently, the query complexity, which measures the cost for implementing the time-evolution, has optimal and nearly-optimal dependency respectively in time $t$ and inverse error $\varepsilon$, and becomes sufficiently close to that of qubitization. Thus, our protocol tells us that, among generic time-dependent systems, time-periodic systems provides a class accessible as efficiently as time-independent systems despite the existence of time-dependency. As we also provide applications to simulation of nonequilibrium phenomena and adiabatic state preparation, our results will shed light on nonequilibrium phenomena in condensed matter physics and quantum chemistry, and quantum tasks yielding time-dependency in quantum computation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源