论文标题
随机图中安德森过渡的临界特性:两参数缩放理论,kosterlitz-无尽的流动和多体定位
Critical properties of the Anderson transition in random graphs: two-parameter scaling theory, Kosterlitz-Thouless type flow and many-body localization
论文作者
论文摘要
随机图中的安德森过渡引起了极大的兴趣,部分原因是它与多体定位(MBL)过渡的类比。与后者不同,现在已经确定了许多随机图的结果,尤其是将局部性局部疾病与诸如千古化的分离阶段分开的关键疾病的存在和精确值。但是,重新归一化的群体流量和过渡的性质尚不清楚。反过来,关于MBL过渡的最新作品又提出了一个显着的预测,即流程是Kosterlitz-无尽的类型。在这里,我们证明了图形上的安德森过渡显示相同类型的流程。我们的工作证明了稀有分支的重要性,波函数的本地化长度$ξ_\并行$比横向方向$ξ_\ perp $要大得多。重要的是,这两个长度具有不同的关键行为:$ξ_\并行$与关键指数$ν_\ Parallel = 1 $差异,而在过渡点$ W_C $中,$ξ_\ perp $达到有限的通用values $ {ξ_\ perp^c} $。实际上,$ $之一离域阶段在短尺度上继承了临界方案的强烈非共性特性,但在大尺度上是奇异的,具有独特的关键指数$ν= 1/2 $。这显示了与MBL转变非常有力的类比:$ξ_\ perp $的行为与在现象学重质化组流动中MBL的典型定位长度相同。我们为小世界复杂的网络模型展示了这些重要属性,并通过考虑不同的网络参数和安德森本地化的不同关键可观察物来展示我们结果的普遍性。
The Anderson transition in random graphs has raised great interest, partly because of its analogy with the many-body localization (MBL) transition. Unlike the latter, many results for random graphs are now well established, in particular the existence and precise value of a critical disorder separating a localized from an ergodic delocalized phase. However, the renormalization group flow and the nature of the transition are not well understood. In turn, recent works on the MBL transition have made the remarkable prediction that the flow is of Kosterlitz-Thouless type. Here we show that the Anderson transition on graphs displays the same type of flow. Our work attests to the importance of rare branches along which wave functions have a much larger localization length $ξ_\parallel$ than the one in the transverse direction, $ξ_\perp$. Importantly, these two lengths have different critical behaviors: $ξ_\parallel$ diverges with a critical exponent $ν_\parallel=1$, while $ξ_\perp$ reaches a finite universal value ${ξ_\perp^c}$ at the transition point $W_c$. Indeed, $ξ_\perp^{-1} \approx {ξ_\perp^c}^{-1} + ξ^{-1}$, with $ξ\sim (W-W_c)^{-ν_\perp}$ associated with a new critical exponent $ν_\perp = 1/2$, where $\exp( ξ)$ controls finite-size effects. The delocalized phase inherits the strongly non-ergodic properties of the critical regime at short scales, but is ergodic at large scales, with a unique critical exponent $ν=1/2$. This shows a very strong analogy with the MBL transition: the behavior of $ξ_\perp$ is identical to that recently predicted for the typical localization length of MBL in a phenomenological renormalization group flow. We demonstrate these important properties for a smallworld complex network model and show the universality of our results by considering different network parameters and different key observables of Anderson localization.