论文标题
通过传输X射线成像和离散元素模拟对薄金属粉末层的定量分析:基于刀片的扩散方法
Quantitative analysis of thin metal powder layers via transmission X-ray imaging and discrete element simulation: Blade-based spreading approaches
论文作者
论文摘要
扩展均匀和致密的层对于使用粉末床添加剂制造(AM)创建高质量组件至关重要。类似刀片的工具通常用于散布粉末金属原料,尤其是在激光粉床融合和电子束熔化中,其中粉末的特征是D50的30微米或更高。除了由层的几何形状和印刷成分的表面地形引入的边界条件中的变化,扩散工具和粉末之间的随机相互作用导致层质量的空间变化,这些变化仍然不太了解。在这里,为了在代表粉末床AM的条件下研究粉末扩散,我们采用了模块化机械化的设备,从中等和高度粘性的粉末中创建粉末层,并选择了多种类似刀片的散布工具。使用传输X射线成像在空间映射粉末层的有效深度,并通过统计方法量化均匀性。我们首先比较层密度或粉末层的有效深度,并显示具有弯曲曲线的叶片几何形状会导致材料沉积增加。其次,这种方法可以量化局部波动或层缺陷严重程度。例如,我们观察到,与45度刚性刀片相比,V形橡胶叶片的主要优势在于使叶片边缘的局部偏转以消除来自大颗粒的条纹,同时增加沉积。此外,我们采用自定义的DEM模拟,通过伪物质方法阐明颗粒密度和表面能的相对作用,在这种方法中,惯性和凝聚力的平衡决定了宏尺度粉末流动性。对于特定的合金密度,我们发现临界表面能量超出其使用刀片进行粉末扩散时层密度极大的损害。
Spreading uniform and dense layers is of paramount importance to creating high-quality components using powder bed additive manufacturing (AM). Blade-like tools are often employed for spreading powder metal feedstocks, especially in laser powder bed fusion and electron beam melting, where powders are characterized by a D50 of 30 microns or greater. Along with variations in boundary conditions introduced by the layer-wise geometry and surface topography of the printed component, stochastic interactions between the spreading tool and powder result in spatial variations of layer quality that are still not well understood. Here, to study powder spreading under conditions representative of powder bed AM, we employ a modular, mechanized apparatus to create powder layers from moderately and highly cohesive powders with a selection of blade-like spreading tools. Powder layer effective depth is spatially mapped using transmission X-ray imaging, and uniformity is quantified via a statistical approach. We first compare layer density, or the effective depth of powder layer, and show that blade geometries with a curved profile lead to increased material deposition. Second, this approach enables quantification of local fluctuations, or layer defect severity. For example, we observe that the primary benefit of a V-shaped rubber blade, as compared to a 45 degree rigid blade, lies in enabling local deflection of the blade edge to eliminate streaking from large particles, while also increasing deposition. Additionally, we employ a custom DEM simulation to elucidate the opposing roles of particle density and surface energy with a pseudo-material approach, where the balance of inertial and cohesive forces determine macro-scale powder flowability. For specific alloy densities, we find a critical surface energy beyond which layer density is greatly impaired when powder spreading is performed using a blade.