论文标题
光子主导区域中的纳米谷物耗竭
Nano-grain depletion in photon-dominated regions
论文作者
论文摘要
语境。碳质量纳米粒在星际培养基(ISM)的物理化学(尤其是光子主导区域(PDR))中起着基本作用。它们的特性随局部物理条件而变化,并影响局部化学和动态。目标。我们的目的是强调三种不同的PDR中碳质纳米粒的演变,并提出尘埃进化的情况作为对物理条件的反应。方法。我们将Spitzer/IRAC(3.6、4.5、5.8和8 $ $ M)和Spitzer/MIPS(24 $μ$ M)与Herschel/PAC(70 $ $ $ M)一起绘制IC63和Orion bar中的灰尘排放。为了评估灰尘特性,我们使用辐射传递代码SOC与Themis Dust模型一起建模了这些区域中的灰尘发射。结果。无论使用哪种PDR,我们都会发现纳米粒已耗尽,其最小尺寸大于扩散的ISM(DIMS),这表明将纳米粒子带到照相的机制非常有效地低于给定的临界尺寸限制。纳米谷物粉尘与气体质量比具有G0和照明恒星的有效温度的演变表明,纳米谷物形成之间的竞争是通过较大的谷物的碎片和纳米谷物的照相侵蚀之间的竞争。我们对辐射压力驱动的尘埃碰撞进行了建模,并采用经典的1D方法来表明这是一种可行的场景,用于通过碎片来解释纳米粒形成,因此,从一个PDR到另一种PDR中观察到的变化。结论。我们发现从一个PDR到另一种PDR的纳米粒尘埃特性有很大的变化,以及这些区域中纳米谷物耗竭的一般趋势。我们通过辐射压力诱导的碰撞引起的大晶粒的碎片,提出了纳米谷物形成的可行情况。
Context. Carbonaceous nano-grains play a fundamental role in the physico-chemistry of the interstellar medium (ISM) and especially of photon-dominated regions (PDRs). Their properties vary with the local physical conditions and affect the local chemistry and dynamics. Aims. We aim to highlight the evolution of carbonaceous nano-grains in three different PDRs and propose a scenario of dust evolution as a response to the physical conditions. Methods. We used Spitzer/IRAC (3.6, 4.5, 5.8, and 8 $μ$m) and Spitzer/MIPS (24 $μ$m) together with Herschel/PACS (70 $μ$m) to map dust emission in IC63 and the Orion Bar. To assess the dust properties, we modelled the dust emission in these regions using the radiative transfer code SOC together with the THEMIS dust model. Results. Regardless of the PDR, we find that nano-grains are depleted and that their minimum size is larger than in the diffuse ISM (DISM), which suggests that the mechanisms that lead nano-grains to be photo-destroyed are very efficient below a given critical size limit. The evolution of the nano-grain dust-to-gas mass ratio with both G0 and the effective temperature of the illuminating star indicates a competition between the nano-grain formation through the fragmentation of larger grains and nano-grain photo-destruction. We modelled dust collisions driven by radiative pressure with a classical 1D approach to show that this is a viable scenario for explaining nano-grain formation through fragmentation and, thus, the variations observed in nano-grain dust-to-gas mass ratios from one PDR to another. Conclusions. We find a broad variation in the nano-grain dust properties from one PDR to another, along with a general trend of nano-grain depletion in these regions. We propose a viable scenario of nano-grain formation through fragmentation of large grains due to radiative pressure-induced collisions.