论文标题
在二维中相互作用的Floquet系统的散装对应关系
Bulk-boundary correspondence for interacting Floquet systems in two dimensions
论文作者
论文摘要
我们提出了一种用于在两个空间维度中进行多体局部浮雕系统交互的散装和边缘不变的方法。此方法基于我们称为流的一般数学对象。作为我们方法的应用,我们为没有对称性的浮点系统以及$ u(1)$对称的系统得出了批量不变。我们还得出了先前已知的单粒子和多体不变的新配方。对于无对称性的玻感系统,我们的不变式给出了有理价值的GNVW索引$ \ frac {p} {q} $量化量子信息沿边缘的传输。
We present a method for deriving bulk and edge invariants for interacting, many-body localized Floquet systems in two spatial dimensions. This method is based on a general mathematical object which we call a flow. As an application of our method, we derive bulk invariants for Floquet systems without symmetry, as well as for systems with $U(1)$ symmetry. We also derive new formulations of previously known single-particle and many-body invariants. For bosonic systems without symmetry, our invariant gives a bulk counterpart of the rational-valued GNVW index $\frac{p}{q}$ quantifying transport of quantum information along the edge.