论文标题
双曲线黑洞遭遇中的自我力量
Self-force in hyperbolic black hole encounters
论文作者
论文摘要
自力方法可以应用于两体双曲线遇到的散射角度,按顺序按质量比(假定小)按顺序工作,但没有求助于弱场近似。反过来,这可以告知正在进行的努力,以通过有效的一体描述或其他方法来构建对一般相关二进制动力学的准确描述。现有的自我力量方法在很大程度上是专门针对绑定的灵感轨道的。在这里,我们将一阶保守的自我矫正得出范围为散射角度,显示了其与最近的后锁队结果的一致性,并为(数值)自力计算开发了一种可以有效地处理散射轨道的技术。在该方法中,度量扰动是从满足Teukolsky方程的某些不均匀版本的HERTZ电位中重建的。该配方中的关键成分是某些跳跃条件,即Hertz潜力(Hertz的多极模式)必须沿着小体轨道的全球满足。我们为Schwarzschild时空中的任意地球轨道提供了这些跳跃的封闭式表达。为了开始开发数值基础架构,开发了Schwarzschild背景(1+1D)上的标量场进化代码。之后,计算了保守的标量自力校正对散点角的结果。我们继续在Schwarzschild背景上构建Teukolsky Evolution代码。由于数值误差,这会产生数值不稳定的解决方案,而地平线上的Teukolsky方程的非物理均匀解决方案则是无限的。这可以通过变量更改为regge-wheeler状场来解决。然后,我们提出了该方法的完整数值实现,用于Schwarzschild中的圆形和散射轨道。
Self-force methods can be applied in calculations of the scatter angle in two-body hyperbolic encounters, working order by order in the mass ratio (assumed small) but with no recourse to a weak-field approximation. This, in turn, can inform ongoing efforts to construct an accurate description of the general-relativistic binary dynamics via an effective-one-body description or other approaches. Existing self-force methods are to a large extent specialised to bound, inspiral orbits. Here we derive the first-order conservative self-force correction to the scattering angle, show its agreement with recent post-Minkowsian results, and develop a technique for (numerical) self-force calculations that can efficiently tackle scatter orbits. In the method, the metric perturbation is reconstructed from a Hertz potential that satisfies (mode-by-mode) a certain inhomogeneous version of the Teukolsky equation. The crucial ingredient in this formulation are certain jump conditions that the (multipole modes of the) Hertz potential must satisfy along the worldline of the small body's orbit. We present a closed-form expression for these jumps, for an arbitrary geodesic orbit in Schwarzschild spacetime. To begin developing the numerical infrastructure, a scalar-field evolution code on a Schwarzschild background (in 1+1D) is developed. Following this, results for the conservative scalar self-force corrections to the scatter angle are calculated. We continue by constructing a Teukolsky evolution code on a Schwarzschild background. This produces numerically unstable solutions due to unphysical homogeneous solutions of the Teukolsky equation at the horizon and null infinity being seeded by numerical error. This can be resolved by a change of variables to a Regge-Wheeler-like field. We then present a full numerical implementation of this method for circular and scatter orbits in Schwarzschild.