论文标题

关于投影型Hyperkähler歧管的符合性的双重自图,k3 $^{[n]} $ - 类型

On symplectic birational self-maps of projective hyperkähler manifolds of K3$^{[n]}$-type

论文作者

Dutta, Yajnaseni, Mattei, Dominique, Prieto-Montañez, Yulieth

论文摘要

我们证明,K3 $^{[n]} $的投射Hyperkähler歧管 - 键入有限顺序的非平凡的符号符合性的birational comprational sublational sublational sublational sublational sublational symap是对稳定(扭曲的)相干轴承的模态空间的同构。在这种结果的驱动下,我们分析了对滑轮模量空间的可移动锥的反思,并确定它们何时来自异性。

We prove that projective hyperkähler manifolds of K3$^{[n]}$-type admitting a non-trivial symplectic birational self-map of finite order are isomorphic to moduli spaces of stable (twisted) coherent sheaves on K3 surfaces. Motivated by this result, we analyze the reflections on the movable cone of moduli spaces of sheaves and determine when they come from a birational involution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源