论文标题
非高斯过程回归
Non-Gaussian Process Regression
论文作者
论文摘要
标准GP为行为良好的过程提供了灵活的建模工具。然而,预计与高斯的偏差有望在现实世界数据集中出现,结构异常值和冲击通常会观察到。在这些情况下,GP可能无法充分建模不确定性,并且可能会过度地推断。在这里,我们将GP框架扩展到新的一类时变的GP,从而可以直接建模重尾非高斯行为,同时通过非均匀GPS表示的无限混合物保留了可拖动的条件GP结构。通过调节在潜在转化的输入空间上的观测值来获得条件GP结构,并使用Lévy过程对潜在转化的随机演变进行建模,该过程允许贝叶斯的后验预测密度和潜在转化函数。我们为该模型提供了马尔可夫链蒙特卡洛推理程序,并证明了与标准GP相比的潜在益处。
Standard GPs offer a flexible modelling tool for well-behaved processes. However, deviations from Gaussianity are expected to appear in real world datasets, with structural outliers and shocks routinely observed. In these cases GPs can fail to model uncertainty adequately and may over-smooth inferences. Here we extend the GP framework into a new class of time-changed GPs that allow for straightforward modelling of heavy-tailed non-Gaussian behaviours, while retaining a tractable conditional GP structure through an infinite mixture of non-homogeneous GPs representation. The conditional GP structure is obtained by conditioning the observations on a latent transformed input space and the random evolution of the latent transformation is modelled using a Lévy process which allows Bayesian inference in both the posterior predictive density and the latent transformation function. We present Markov chain Monte Carlo inference procedures for this model and demonstrate the potential benefits compared to a standard GP.