论文标题
具有反转对称性的一维拓扑材料的散装对应关系
Bulk-interface correspondences for one dimensional topological materials with inversion symmetry
论文作者
论文摘要
每当整个界面上的某些拓扑不变变化时,频谱张开的汉密尔顿人描述的两种材料之间的界面预计将具有差距界面模式。我们提供了此批量交易对应关系及其严格的理由的确切陈述。该对应关系适用于具有反转对称性的一维材料之间接口的连续和晶格模型,而错位模型特别感兴趣。对于连续模型,对“边缘” BLOCH模式的均衡性的分析是我们参数的关键组成部分,而对于晶格模型,相对Zak阶段和索引理论是。
The interface between two materials described by spectrally gapped Hamiltonians is expected to host an in-gap interface mode, whenever a certain topological invariant changes across the interface. We provide a precise statement of this bulk-interface correspondence, and its rigorous justification. The correspondence applies to continuum and lattice models of interfaces between one-dimensional materials with inversion symmetry, with dislocation models being of particular interest. For continuum models, the analysis of the parity of the "edge" Bloch modes is the key component in our argument, while for the lattice models, the relative Zak phase and index theory are.