论文标题

多时间Landau-Zener模型的无规则

No-go rules for multitime Landau-Zener models

论文作者

Wang, Liping, Sun, Chen

论文摘要

多时间Landau-Zener(MTLZ)模型是一类确切的可解决量子多体型模型,它是两态Landau-Zener模型的多状态和多时间概括。目前发现的MTLZ型号包括“ HyperCubes”,“粉丝”及其直接产品模型。在这项工作中,我们证明了两个无行规则,称为“ no $ k_ {3,3} $”规则和“否$ 1221 $”规则,该规则禁止存在具有某些交互结构的模型的精确解决方案。我们进一步应用了这些规则,以表明对于不超过$ 9 $状态的型号,除了上面提到的模型外,没有其他MTLZ型号。我们还提出了一种计划,以系统地对可能托管MTLZ模型的情况进行分类。我们的工作可以作为在MTLZ类中搜索新的可解决模型的指南。

Multitime Landau-Zener (MTLZ) model is a class of exactly solvable quantum many-body models which is multitstate and multitime generalization of the two-state Landau-Zener model. Currently discovered MTLZ models include the "hypercubes", the "fans" and their direct product models. In this work, we prove two no-go rules, named the "no $K_{3,3}$" rule and the "no $1221$" rule, which forbid the existence of exact solutions for models with certain structures of interactions. We further apply these rules to show that for models with no more than $9$ states, besides the models mentioned above there are no other MTLZ models. We also propose a scheme to systematically classify cases that could possibly host MTLZ models. Our work could serve as a guideline to search for new exactly solvable models within the MTLZ class.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源