论文标题
时空多物种竞争问题的数值研究和因子分析
Numerical investigation and factor analysis of the spatial-temporal multi-species competition problem
论文作者
论文摘要
在这项工作中,我们考虑了时空多物种竞争模型。数学模型由非线性扩散反应方程的耦合系统描述。对于具有相应边界和初始条件的模型的数值解,我们使用具有半图段时间近似的有限体积近似。为了了解一个和二维公式中溶液扩散的影响,我们为与生存方案有关的几种参数呈现数值结果。研究了随机初始条件对达到平衡时间的影响。提出了扩散对生存情景的影响。在实际问题中,参数的值通常是未知的,并且在某些范围内有所不同。为了评估参数对系统稳定性的影响,我们模拟了具有随机参数的时空模型,并为两个和三种竞争模型执行因子分析。
In this work, we consider the spatial-temporal multi-species competition model. A mathematical model is described by a coupled system of nonlinear diffusion-reaction equations. We use a finite volume approximation with semi-implicit time approximation for the numerical solution of the model with corresponding boundary and initial conditions. To understand the effect of the diffusion to solution in one and two-dimensional formulations, we present numerical results for several cases of the parameters related to the survival scenarios. The random initial conditions' effect on the time to reach equilibrium is investigated. The influence of diffusion on the survival scenarios is presented. In real-world problems, values of the parameters are usually unknown and vary in some range. In order to evaluate the impact of parameters on the system stability, we simulate a spatial-temporal model with random parameters and perform factor analysis for two and three-species competition models.