论文标题
通过种族的镜头研究甘恩的偏见
Studying Bias in GANs through the Lens of Race
论文作者
论文摘要
在这项工作中,我们研究了生成图像模型的性能和评估如何受到其培训数据集的种族组成的影响。通过检查和控制各种培训数据集中的种族分布,我们能够观察不同培训分布对生成的图像质量和生成图像的种族分布的影响。我们的结果表明,生成的图像的种族组成成功地保留了培训数据。但是,我们观察到截断是一种用于在推断过程中产生更高质量图像的技术,加剧了数据中的种族失衡。最后,在检查图像质量与种族之间的关系时,我们发现给定种族的最高可感知的视觉质量图像来自分布,在该分布中,该种族的代表性很好,注释者始终偏爱白人的生成图像,而不是黑人。
In this work, we study how the performance and evaluation of generative image models are impacted by the racial composition of their training datasets. By examining and controlling the racial distributions in various training datasets, we are able to observe the impacts of different training distributions on generated image quality and the racial distributions of the generated images. Our results show that the racial compositions of generated images successfully preserve that of the training data. However, we observe that truncation, a technique used to generate higher quality images during inference, exacerbates racial imbalances in the data. Lastly, when examining the relationship between image quality and race, we find that the highest perceived visual quality images of a given race come from a distribution where that race is well-represented, and that annotators consistently prefer generated images of white people over those of Black people.