论文标题

存在规则的有限范围:迈向一般标准,以确定但高度表达的查询

Finite-Cliquewidth Sets of Existential Rules: Toward a General Criterion for Decidable yet Highly Expressive Querying

论文作者

Feller, Thomas, Lyon, Tim S., Ostropolski-Nalewaja, Piotr, Rudolph, Sebastian

论文摘要

为了追求基于本体本体的查询的通用标准,我们介绍了存在规则的“有限 - 局限性集合”(FCS),这是一种模型定义的规则集类别,灵感来自图形理论的cliquewidth措施。通过一个通用参数,我们表明FCS确保对相当一类的查询类(称为“ Damsoqs”)的必要性包含结合性查询(CQS)。 FCS类适当地概括了有限膨胀集(FES)的类别,并且最多可以介绍2个arity的签名,即有界树的类别(BTS)。对于较高的ARIT,BTS仅由FC间接地归入FC,以归因。尽管FC的一般性,但我们提供了一个规则集,该规则集(根据一阶 - 剥离性)属于FCS之外,从而证明了FCS的无与伦比和有限合并集(FUS)的无效性。尽管如此,我们表明,如果我们将自己限制在最多2的单头规则上,则最多只能使用2个签名,则FCS属于FUS。

In our pursuit of generic criteria for decidable ontology-based querying, we introduce 'finite-cliquewidth sets' (FCS) of existential rules, a model-theoretically defined class of rule sets, inspired by the cliquewidth measure from graph theory. By a generic argument, we show that FCS ensures decidability of entailment for a sizable class of queries (dubbed 'DaMSOQs') subsuming conjunctive queries (CQs). The FCS class properly generalizes the class of finite-expansion sets (FES), and for signatures of arity at most 2, the class of bounded-treewidth sets (BTS). For higher arities, BTS is only indirectly subsumed by FCS by means of reification. Despite the generality of FCS, we provide a rule set with decidable CQ entailment (by virtue of first-order-rewritability) that falls outside FCS, thus demonstrating the incomparability of FCS and the class of finite-unification sets (FUS). In spite of this, we show that if we restrict ourselves to single-headed rule sets over signatures of arity at most 2, then FCS subsumes FUS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源