论文标题

具有张量网络的可扩展且灵活的经典影子层析成像

Scalable and Flexible Classical Shadow Tomography with Tensor Networks

论文作者

Akhtar, Ahmed A., Hu, Hong-Ye, You, Yi-Zhuang

论文摘要

经典影子层析成像是一种强大的随机测量协议,用于预测量子状态的许多特性,几乎没有测量。文献中已经对两种经典的影子协议进行了广泛的研究:单量(本地)Pauli测量,非常适合预测本地运营商,但效率低下;以及全球Clifford测量值,对于低级操作员而言,这是有效的,但由于广泛的门开销,在近期量子设备上是不可行的。在这项工作中,我们展示了一种可扩展的经典影子层析成像方法,用于使用有限的局部克利福德随机统一电路实施的通用随机测量方法,该电路在Pauli和Clifford测量的范围之间进行了插值。该方法结合了最近提出的本地经典影子层析成像框架与张量网络技术,以实现计算经典影子重建图并评估各种物理属性的可扩展性。该方法使经典的阴影层析成像可以在具有较高样品效率和最小栅极开销的浅量子电路上进行,并且对嘈杂的中间尺度量子(NISQ)设备友好。我们表明,浅水电路测量协议提供了比Pauli测量协议的直接指数优势,用于预测准局部运算符。与Pauli测量相比,它还可以实现更有效的忠诚度估计。

Classical shadow tomography is a powerful randomized measurement protocol for predicting many properties of a quantum state with few measurements. Two classical shadow protocols have been extensively studied in the literature: the single-qubit (local) Pauli measurement, which is well suited for predicting local operators but inefficient for large operators; and the global Clifford measurement, which is efficient for low-rank operators but infeasible on near-term quantum devices due to the extensive gate overhead. In this work, we demonstrate a scalable classical shadow tomography approach for generic randomized measurements implemented with finite-depth local Clifford random unitary circuits, which interpolates between the limits of Pauli and Clifford measurements. The method combines the recently proposed locally-scrambled classical shadow tomography framework with tensor network techniques to achieve scalability for computing the classical shadow reconstruction map and evaluating various physical properties. The method enables classical shadow tomography to be performed on shallow quantum circuits with superior sample efficiency and minimal gate overhead and is friendly to noisy intermediate-scale quantum (NISQ) devices. We show that the shallow-circuit measurement protocol provides immediate, exponential advantages over the Pauli measurement protocol for predicting quasi-local operators. It also enables a more efficient fidelity estimation compared to the Pauli measurement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源