论文标题

关于最大似然APA的收敛和最佳性

On convergence and optimality of maximum-likelihood APA

论文作者

Jalali, Shirin, Nuzman, Carl, Sun, Yue

论文摘要

仿射投影算法(APA)是自适应过滤应用中的一种众所周知的算法,例如音频回声取消。 APA取决于三个参数:$ P $(投影订单),$μ$(步长)和$δ$(正则化参数)。众所周知,用于固定参数的APA会导致收敛速度和准确性之间的权衡。因此,文献中已经提出了各种适应性设置参数的方法。受最大似然(ML)估计的启发,我们得出了一种基于ML的新方法,用于自适应设置APA的参数,我们称之为ML-APA。对于无内存的高斯输入,我们充分表征了ML-APA的预期未对准误差是迭代编号的函数,并表明它将其收敛至零为$ O({1 \ fos t})$。我们进一步证明所达到的误差在渐近上是最佳的。 ML-APA每次$ p $样本就会更新其估算。我们还提出了增量ML-APA(IML-APA),它在我们的仿真结果中更新每个时间步骤的系数,并且超过ML-APA。我们的仿真结果验证了无内存输入的分析结论,并表明新算法对于强相关的输入信号也很好。

Affine projection algorithm (APA) is a well-known algorithm in adaptive filtering applications such as audio echo cancellation. APA relies on three parameters: $P$ (projection order), $μ$ (step size) and $δ$ (regularization parameter). It is known that running APA for a fixed set of parameters leads to a tradeoff between convergence speed and accuracy. Therefore, various methods for adaptively setting the parameters have been proposed in the literature. Inspired by maximum likelihood (ML) estimation, we derive a new ML-based approach for adaptively setting the parameters of APA, which we refer to as ML-APA. For memoryless Gaussian inputs, we fully characterize the expected misalignment error of ML-APA as a function of iteration number and show that it converges to zero as $O({1\over t})$. We further prove that the achieved error is asymptotically optimal. ML-APA updates its estimate once every $P$ samples. We also propose incremental ML-APA (IML-APA), which updates the coefficients at every time step and outperforms ML-APA in our simulations results. Our simulation results verify the analytical conclusions for memoryless inputs and show that the new algorithms also perform well for strongly correlated input signals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源