论文标题
HKLL的非标准化模式
HKLL for the Non-Normalizable Mode
论文作者
论文摘要
我们讨论了ADS $ _ {D+1} $中免费标量字段的HKLL批量重建的各个方面。首先,我们考虑了全局坐标中非标准化模式的间距重建内核。我们将其构建为模式总和。在甚至大容量的尺寸中,可以使用我们建议的弦绿色功能方法来复制这一点。这使得非标准化模式的全局广告结果与可正常化模式的文献中的结果相等。在PoincaréAds中,我们呈现明确的模式总和总体上会导致均匀和奇数尺寸,以适用于可正常化的和不可差的内核。对于通用缩放尺寸$δ$,可以以与全球广告的结果相匹配的形式,并通过对映射映射以及剩余时间。我们没有意识到文献中删除这些剩余条款的一般论点,但是我们注意到,在$δ$是(半个)整数的情况的情况下,边界空间坐标的轻微复杂化允许我们这样做。由于非标准化模式在CFT中打开了源,因此我们认为这是从全息图的一般空间中理解线性波方程的一步。但是,当缩放尺寸$δ$在Breitenlohner-Freedman窗口中时,我们注意到该结构在ADS/CFT中具有一些有趣的功能。
We discuss various aspects of HKLL bulk reconstruction for the free scalar field in AdS$_{d+1}$. First, we consider the spacelike reconstruction kernel for the non-normalizable mode in global coordinates. We construct it as a mode sum. In even bulk dimensions, this can be reproduced using a chordal Green's function approach that we propose. This puts the global AdS results for the non-normalizable mode on an equal footing with results in the literature for the normalizable mode. In Poincaré AdS, we present explicit mode sum results in general even and odd dimensions for both normalizable and non-normalizable kernels. For generic scaling dimension $Δ$, these can be re-written in a form that matches with the global AdS results via an antipodal mapping, plus a remainder. We are not aware of a general argument in the literature for dropping these remainder terms, but we note that a slight complexification of a boundary spatial coordinate (which we call an $i ε$ prescription) allows us to do so in cases where $Δ$ is (half-) integer. Since the non-normalizable mode turns on a source in the CFT, our primary motivation for considering it is as a step towards understanding linear wave equations in general spacetimes from a holographic perspective. But when the scaling dimension $Δ$ is in the Breitenlohner-Freedman window, we note that the construction has some interesting features within AdS/CFT.