论文标题
关于R. M. Murty和V. K. Murty II的猜想
On a conjecture of R. M. Murty and V. K. Murty II
论文作者
论文摘要
令$ω^*(n)$为Primes $ p $的数量,以便$ p-1 $划分$ n $。假设Elliott-Halberstam猜想,我们证明了M. R. Murty和V. K. Murty在2021年发布的一个猜想,该猜想指出,$ \ sum_ {n \ sum_ {n \ leqslant x}ω^*(n) \ text {as} \ quad x \ rightarrow \ infty。 我们论点中的关键要素之一是筛分的应用在估计涉及算术进程中的素数的各种求和的情况下,而不是直接使用Brun-titchmarsh不平等,这不适用于我们的任务。
Let $ω^*(n)$ be the number of primes $p$ such that $p-1$ divides $n$. Assuming the Elliott--Halberstam Conjecture, we prove a conjecture posted by M. R. Murty and V. K. Murty in 2021 which states that $$\sum_{n\leqslant x}ω^*(n)^2\sim 2\frac{ζ(2)ζ(3)}{ζ(6)}x\log x, \quad \text{as} \quad x\rightarrow \infty.$$ The above sum was first investigated by Prachar in 1955. One of the key ingredients in our argument is the application of a sieve result on estimating various certain summations involving primes in arithmetic progressions, rather than a direct use of the Brun--Titchmarsh inequality which would not be applicable for our task.