论文标题
夹心1/2至1的夹层rényi发散的操作解释为强逆向指数
Operational Interpretation of the Sandwiched Rényi Divergence of Order 1/2 to 1 as Strong Converse Exponents
论文作者
论文摘要
我们提供(\ frac {1} {2},1)$及其诱导的量子信息数量的订单$α\的夹心rényi差异,并在表征量子任务的确切强逆向指数方面具有操作解释。具体而言,我们考虑(a)最大呈熵的平滑,(b)量子隐私放大以及(c)量子信息解耦。我们解决了确定这三个任务的确切强匡威指数的问题,其性能是通过忠诚度或纯化距离来衡量的。结果是根据(\ frac {1} {2},1)$的夹层rényi差异及其诱导的量子rényi条件熵和量子rényi共同信息给出的结果。这是第一次在(\ frac {1} {2},1)$中找到带有rényi参数的夹层rényi发散的精确操作含义。
We provide the sandwiched Rényi divergence of order $α\in(\frac{1}{2},1)$, as well as its induced quantum information quantities, with an operational interpretation in the characterization of the exact strong converse exponents of quantum tasks. Specifically, we consider (a) smoothing of the max-relative entropy, (b) quantum privacy amplification, and (c) quantum information decoupling. We solve the problem of determining the exact strong converse exponents for these three tasks, with the performance being measured by the fidelity or purified distance. The results are given in terms of the sandwiched Rényi divergence of order $α\in(\frac{1}{2},1)$, and its induced quantum Rényi conditional entropy and quantum Rényi mutual information. This is the first time to find the precise operational meaning for the sandwiched Rényi divergence with Rényi parameter in the interval $α\in(\frac{1}{2},1)$.