论文标题

关于3D浮力流体驱动裂纹的传播注释

Notes on Propagation of 3D Buoyant Fluid-Driven Cracks

论文作者

Garagash, Dmitry I., Germanovich, Leonid N.

论文摘要

岩浆驱动的裂缝是地壳中岩浆的主要机制。一个基本问题是,释放的流体如何控制三个维度的传播动力学和断裂几何形状(深度和广度)。明胶中的模拟实验表明,当断裂头(控制宽度的位置)中的过程以固体韧性为主,而粘性液体耗散在裂缝尾部主导。我们模拟了所得的浮力,手指状的固定宽度骨折的传播,并沿裂纹长度缓慢变化。水平横截面中对流体负荷的弹性反应是局部局部处理的,并且可以类似于液压压裂的经典珀金斯 - 尼德格伦(PKN)模型。手指状裂纹的传播条件是基于平衡由于单位裂纹延伸与岩石断裂韧性导致的全球能量释放速率。它使我们能够将尖端的净流体压力与断裂宽度和岩石韧性联系起来。与横向传播的PKN骨折不同,那里的宽度是先验的宽度,垂直垂直上升的骨折的最终宽度是骨折头部过程的结果。由于头部比尾巴更开放,因此可以忽略头部的粘性压力下降,从而导致Weertman静水压脉冲的3D类似物。这需要放松断裂头中PKN模型的局部弹性假设。结果,我们解决了宽度,然后将粘度主导的尾巴与三个维度(韧性主导的头)匹配以获得完整的闭合溶液。然后,我们在连续注射或有限体积释放的条件下分析浮力驱动的断裂传播,以代表低粘度岩浆堤防的一组参数。

Magma-driven fractures are the main mechanism for magma emplacement in the crust. A fundamental question is how the released fluid controls the propagation dynamics and fracture geometry (depth and breadth) in three dimensions. Analog experiments in gelatin have shown that fracture breadth remains nearly stationary when the process in the fracture head (where breadth is controlled) is dominated by solid toughness, whereas viscous fluid dissipation is dominant in the fracture tail. We model propagation of the resulting buoyant, finger-like fracture of stationary breadth with a slowly varying opening along the crack length. The elastic response to fluid loading in a horizontal cross-section is local and can be treated similarly to the classical Perkins-Kern-Nordgren (PKN) model of hydraulic fracturing. The propagation condition for a finger-like crack is based on balancing the global energy release rate due to a unit crack extension with the rock fracture toughness. It allows us to relate the net fluid pressure at the tip to the fracture breadth and rock toughness. Unlike laterally propagating PKN fracture, where breadth is known a priori, the final breadth of a finger-like vertically ascending fracture is a result of processes in the fracture head. Because the head is much more open than the tail, viscous pressure drop in the head can be neglected leading to a 3D analog of Weertman hydrostatic pulse. This requires relaxing the local elasticity assumption of the PKN model in the fracture head. As a result, we resolve the breadth, and then match the viscosity-dominated tail with the three dimensions, toughness-dominated head to obtain a complete closed-form solution. We then analyze the buoyancy-driven fracture propagation in conditions of either continuous injection or finite volume release for sets of parameters representative of low viscosity magma diking.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源