论文标题
Weinstein歧管上的分类和拓扑熵的比较
A comparison of categorical and topological entropies on Weinstein manifolds
论文作者
论文摘要
令$ w $为符号歧管,让$ ϕ:w \ to w $为符号自动形态。然后,$ ϕ $诱导了$ w $ fukaya类别中定义的自动等价$φ$。在本文中,我们证明了$φ$的分类熵从下方的$ w $是$ w $的拓扑熵界限,而$ w $是weinstein歧管,$ ϕ $紧凑。此外,受到Cineli,Ginzburg和Gurel的工作的激励,我们提出了一个猜想,该猜想概括了动态系统的结果。
Let $W$ be a symplectic manifold, and let $ϕ:W \to W$ be a symplectic automorphism. Then, $ϕ$ induces an auto-equivalence $Φ$ defined on the Fukaya category of $W$. In this paper, we prove that the categorical entropy of $Φ$ bounds the topological entropy of $ϕ$ from below where $W$ is a Weinstein manifold and $ϕ$ is compactly supported. Moreover, being motivated by the work of Cineli, Ginzburg, and Gurel, we propose a conjecture which generalizes a result in dynamical system.