论文标题
约束
Constrainahedra
论文作者
论文摘要
我们定义了一个称为ConstraheDra的凸多属的家族,该系数索引了水平和垂直线的碰撞。我们的施工首先定义了良好的矩形预订的poset $ c(m,n)$,然后证明$ c(m,n)$是一个晶格,最后通过获取某些明确定义的点收集的凸面来构建多面有的实现。 Constrahedra将形成第二作者强大统一构建的组合骨干。我们指出了如何将约束性实现为水平和垂直线的Gromov构造空间;从这个角度来看,约束自然地包括在第一作者的2-Associahedra概念中。
We define a family of convex polytopes called constrainahedra, which index collisions of horizontal and vertical lines. Our construction proceeds by first defining a poset $C(m,n)$ of good rectangular preorders, then proving that $C(m,n)$ is a lattice, and finally constructing a polytopal realization by taking the convex hull of a certain explicitly-defined collection of points. The constrainahedra will form the combinatorial backbone of the second author's construction of strong homotopy duoids. We indicate how constrainahedra could be realized as Gromov-compactified configuration spaces of horizontal and vertical lines; viewed from this perspective, the constrainahedra include naturally into the first author's notion of 2-associahedra.