论文标题

局部运动积分和多体定位在Wannier-Start电位中的稳定性

Local integrals of motion and the stability of many-body localisation in Wannier-Stark potentials

论文作者

Bertoni, C., Eisert, J., Kshetrimayum, A., Nietner, A., Thomson, S. J.

论文摘要

通常,在一个空间维度中的无序系统中的多体定位是从存在数量的(Quasi)运动积分(LIOMS)的存在来理解的,这些(Quasi)被认为与距离呈指数衰减,并且仅彼此相互作用。相比之下,关于表现出本地化的无序系统运动积分的形式知之甚少。在这里,我们明确地计算出无序的局部系统的LIOM,重点是线性增加的潜力。我们表明,在没有相互作用的情况下,Lioms的衰减速度比指数快,但相互作用的添加会导致在短距离处形成缓慢的平稳。我们研究LIOM的定位特性如何取决于线性斜率,发现存在很大的有限尺寸依赖性,并有证据表明添加弱谐波电位并不会导致典型的多体定位现象学。相比之下,疾病的添加具有质量不同的效果,从而大大改变了lioms的特性。

Many-body localisation in disordered systems in one spatial dimension is typically understood in terms of the existence of an extensive number of (quasi)-local integrals of motion (LIOMs) which are thought to decay exponentially with distance and interact only weakly with one another. By contrast, little is known about the form of the integrals of motion in disorder-free systems which exhibit localisation. Here, we explicitly compute the LIOMs for disorder-free localised systems, focusing on the case of a linearly increasing potential. We show that while in the absence of interactions, the LIOMs decay faster than exponentially, the addition of interactions leads to the formation of a slow-decaying plateau at short distances. We study how the localisation properties of the LIOMs depend on the linear slope, finding that there is a significant finite-size dependence, and present evidence that adding a weak harmonic potential does not result in typical many-body localisation phenomenology. By contrast, the addition of disorder has a qualitatively different effect, dramatically modifying the properties of the LIOMS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源