论文标题
关于随机力学的多时间相关性
On Multi-Time Correlations in Stochastic Mechanics
论文作者
论文摘要
我们通过其先驱者之一爱德华·尼尔森(Edward Nelson)来解决对量子理论的随机力学方法的长期批评:随机力学中的多时间相关性与教科书量子理论中的相关性不同。我们阐述了Blanchard等人对这种批评的答案。 (1986年),他表明,如果假定在随机力学中的(派生的)波函数在位置测量中崩溃到三角洲函数,则崩溃将改变粒子的随机过程(因为随机过程取决于波浪功能的衍生物),而所得的多时间相关将与文本量子量化的量相关性一致。我们表明,可以通过熟悉的“有效崩溃”工具来严格地做出这一假设,我们用涉及双缝实验的示例来说明这一点。我们还表明,在多个颗粒之间的多个时间相关性的情况下,有效崩溃意味着粒子之间的非局部影响。因此,对随机力学的主要挥之不去的反对意见之一是解散的。
We address a long-standing criticism of the stochastic mechanics approach to quantum theory by one of its pioneers, Edward Nelson: multi-time correlations in stochastic mechanics differ from those in textbook quantum theory. We elaborate upon an answer to this criticism by Blanchard et al. (1986), who showed that if the (derived) wave function in stochastic mechanics is assumed to collapse to a delta function in a position measurement, the collapse will change the stochastic process for the particles (because the stochastic process depends on derivatives of the wave function), and the resulting multi-time correlations will agree with those in textbook quantum theory. We show that this assumption can be made rigorous through the tool of `effective collapse' familiar from pilot-wave theories, and we illustrate this with an example involving the double-slit experiment. We also show that in the case of multi-time correlations between multiple particles, effective collapse implies nonlocal influences between particles. Hence one of the major lingering objections to stochastic mechanics is dissolved.