论文标题
由RCW 86的西南边缘中的环境密度控制的粒子加速度
Particle acceleration controlled by ambient density in the southwestern rim of RCW 86
论文作者
论文摘要
超新星残留物(SNR)冲击的颗粒加速物理学是天体物理学中最有趣的问题之一。 SNR RCW〜86提供了一个合适的环境,以理解粒子加速物理,因为可以通过明亮的X射线发射在同一区域提取加速颗粒和加速环境的信息。在这项工作中,我们研究了RCW 〜86西南地区的X射线适当运动和光谱特性。发现适当的运动速度为$ \ sim 300 $ - 2000〜km〜s $^{ - 1} $,距离为2.8〜kpc。我们发现两个内向移动的细丝,它们更有可能反射的冲击而不是反向冲击。基于X射线光谱,我们评估了热参数,例如环境密度和温度,以及非热参数,例如幂律通量和指数。从几个非热丝的时间下的通量减少,我们估计磁场振幅为$ \ sim 30 $ -100〜 $μ$ g。收集物理参数,然后研究参数相关。我们发现,从热为主导的细丝中发出的同步发射与环境密度$ n _ {\ rm e} $作为$ \ text {(powerlaw flux)} \ propto n _ {\ rm e} e}^{0.38 \ pm 0.10} $,并非或仅在冲击速度和冲击倾斜的情况下弱或弱。作为一种解释,我们提出了一种冲击云相互作用的情况,在该场景中,局部增强的磁性湍流水平对局部加速条件有很大影响。
Particle acceleration physics at supernova remnant (SNR) shocks is one of the most intriguing problems in astrophysics. SNR RCW~86 provides a suitable environment for understanding the particle acceleration physics because one can extract the information of both accelerated particles and acceleration environment at the same regions through the bright X-ray emission. In this work, we study X-ray proper motions and spectral properties of the southwestern region of RCW~86. The proper motion velocities are found to be $\sim 300$--2000~km~s$^{-1}$ at a distance of 2.8~kpc. We find two inward-moving filaments, which are more likely reflected shocks rather than reverse shocks. Based on the X-ray spectroscopy, we evaluate thermal parameters such as the ambient density and temperature, and non-thermal parameters such as the power-law flux and index. From the flux decrease in time of several non-thermal filaments, we estimate the magnetic field amplitudes to be $\sim 30$--100~$μ$G. Gathering the physical parameters, we then investigate parameter correlations. We find that the synchrotron emission from thermal-dominated filaments is correlated with the ambient density $n_{\rm e}$ as $\text{(power-law flux)} \propto n_{\rm e}^{1.0 \pm 0.2}$ and $\text{(power-law index)} \propto n_{\rm e}^{0.38 \pm 0.10}$, not or only weakly with the shock velocity and shock obliquity. As an interpretation, we propose a shock-cloud interaction scenario, where locally enhanced magnetic turbulence levels have a great influence on local acceleration conditions.