论文标题

超导性超导性来自非纤维液体。自由能分析

Superconductivity out of a non-Fermi liquid. Free energy analysis

论文作者

Zhang, Shang-Shun, Wu, Yi-Ming, Abanov, Artem, Chubukov, Andrey V.

论文摘要

在本文中,我们对超导体的冷凝能$ e_c $进行了深入分析,这种情况是由于由无质量的玻色子介导的配对,超导率从非Fermi液体出现时。当金属中的量子限制点附近的电子介导的配对,用于在SYK型模型中配对,以及在穿着的Debye频率消失时以正确定义的极限配对的配对。我们考虑了这些量子批评模型的子集,其中在通道中与适当空间对称的配对通过有效的$ 0+1 $尺寸模型来描述,并具有有效的动态交互$ V(ω_m)= {\ bar g}^γ/| |ω_______________________________________________________________________$ |^γ$,其中$γ$是$ st-pecific($ codel-codel-cod-mod-mod-mod-mod-mod-mod-mod-mod-mod-cod)。在以前的论文中,我们认为$γ$模型中的配对与费米液体中的配对在质量上有所不同,并且$ t = 0 $的间隙方程式具有无限数量的拓扑上不同的解决方案,$Δ_n(ω_m)$,在整数$ n $中,在$ 0 $ $ $ n $中,是$ 0 $ $ $ $ numman $Δ轴。这引起了$ e_ {c,n} $的$ e_c $的一组$ e_c $,其中$ e_ {c,0} $是全局最小值。对于通用$γ<2 $,频谱$ e_ {c,n} $是离散的,但在$γ= 2-0 $的情况下变成连续。在这里,我们更详细地讨论了每个$ e_ {c,n} $附近的冷凝能的轮廓,以及从离散到连续频谱的转换为$γ\ to $γ\到2 $。我们还讨论了正常状态下$γ$模型的自由能和比热。

In this paper, we present in-depth analysis of the condensation energy $E_c$ for a superconductor in a situation when superconductivity emerges out of a non-Fermi liquid due to pairing mediated by a massless boson. This is the case for electronic-mediated pairing near a quantum-critical point in a metal, for pairing in SYK-type models, and for phonon-mediated pairing in the properly defined limit, when the dressed Debye frequency vanishes. We consider a subset of these quantum-critical models, in which the pairing in a channel with a proper spatial symmetry is described by an effective $0+1$ dimensional model with the effective dynamical interaction $V(Ω_m) = {\bar g}^γ/|Ω_m|^γ$, where $γ$ is model-specific (the $γ$-model). In previous papers, we argued that the pairing in the $γ$ model is qualitatively different from that in a Fermi liquid, and the gap equation at $T=0$ has an infinite number of topologically distinct solutions, $Δ_n (ω_m)$, where an integer $n$, running between $0$ and infinity, is the number of zeros of $Δ_n (ω_m)$ on the positive Matsubara axis. This gives rise to the set of extrema of $E_c$ at $E_{c,n}$, of which $E_{c,0}$ is the global minimum. The spectrum $E_{c,n}$ is discrete for a generic $γ<2$, but becomes continuous at $γ= 2-0$. Here, we discuss in more detail the profile of the condensation energy near each $E_{c,n}$ and the transformation from a discrete to a continuous spectrum at $γ\to 2$. We also discuss the free energy and the specific heat of the $γ$-model in the normal state.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源