论文标题

歧管图和驯服缠结

Manifold diagrams and tame tangles

论文作者

Dorn, Christoph, Douglas, Christopher L.

论文摘要

图表符号已成为普遍存在的计算工具。早期示例包括penrose的张量计算图表,Feynman的扰动量子场理论图以及Cvitanovic的lie代数鸟类的鸟类。类别理论提供了一个强大的框架,可以在其中理解此类图的性质,而Joyal and Street则通过引入弦图正式化了该框架,该图表由单型1类别的语法管理。 “歧管图”的概念将字符串图推广到更高的维度,并且可以通过几何二元化过程以更高分类的术语来解释。 “驯服缠结”的密切相关的概念描述了一类富有行为的嵌入式歧管,同样可以分类地解释。在本文中,我们通过使用框架组合拓扑的工具箱的结果,正式介绍了歧管图和驯服缠结的概念,并表明它们接受了组合分类。然后,我们研究在扰动下驯服缠结的稳定性。扰动的局部形式稳定的驯服缠结提供了差异奇点的组合模型。作为例证,我们描述了低维度的各种此类组合奇异性。最后,我们可以观察到所有平滑的4个manifolds都可以作为驯服缠结表示,并猜想对于任何维度的平滑歧管都是如此。

Diagrammatic notation has become a ubiquitous computational tool; early examples include Penrose's graphical notation for tensor calculus, Feynman's diagrams for perturbative quantum field theory, and Cvitanovic's birdtracks for Lie algebras. Category theory provides a robust framework in which to understand the nature of such diagrams, and Joyal and Street formalized this framework by introducing string diagrams, governed by the syntax of monoidal 1-categories. The notion of "manifold diagrams" generalizes string diagrams to higher dimensions, and can be interpreted in higher-categorical terms by a process of geometric dualization. The closely related notion of "tame tangles" describes a well-behaved class of embedded manifolds that can likewise be interpreted categorically. In this paper we formally introduce the notions of manifold diagrams and of tame tangles, and show that they admit a combinatorial classification, by using results from the toolbox of framed combinatorial topology. We then study the stability of tame tangles under perturbation; the local forms of perturbation stable tame tangles provide combinatorial models of differential singularities. As an illustration we describe various such combinatorial singularities in low dimensions. We conclude by observing that all smooth 4-manifolds can be presented as tame tangles, and conjecture that the same is true for smooth manifolds of any dimension.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源