论文标题

部分可观测时空混沌系统的无模型预测

Counting crucial permutations with respect to monotone patterns

论文作者

Choi, Yunseo

论文摘要

最近,Avgustinovich,Kitaev和Taranenko定义了五种类型的$(k,\ ell) - $ cocucial clucial置换,这些排列不包含长度$ k $的子序列的增加或长度$ \ ell $的下降。此外,Avgustinovich,Kitaev和Taranenko开始了$(k,\ ell)的枚举 - $最小长度的关键排列和下一个最小的长度以及$(k,3) - $($ $ $($) - $至关重要的$($ $(k,el)$ crucial $ crucial-crucial-crucial-crucial-crucial-crucial tense。在本文中,我们完成了Avgustinovich,Kitaev和Taranenko开始的枚举。

Recently, Avgustinovich, Kitaev, and Taranenko defined five types of $(k, \ell)-$crucial permutations, which are maximal permutations that do not contain an increasing subsequence of length $k$ or a decreasing subsequence of length $\ell$. Further, Avgustinovich, Kitaev, and Taranenko began the enumeration of the $(k, \ell)-$crucial permutations of the minimal length and the next minimal length and the $(k, 3)-$crucial permutations of all lengths for each of the five types of $(k,\ell)-$crucial permutations. In this paper, we complete the enumeration that Avgustinovich, Kitaev, and Taranenko began.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源