论文标题
关于符号组的定量结构
On quantitative structure of symplectic groups
论文作者
论文摘要
本文的主要目的是研究投影符号组的定量结构$ psp_ {4}(q)$,$ q> 2 $偶数。的确,我们证明了$ psp_ {4}(q)$,$ q> 2 $甚至由它们的订单和相同顺序的元素数量的集合确定。该结果链接到有限简单组的著名J. G. Thompson问题(1987)。
The main aim of this article is to study the quantitative structure of projective symplectic groups $PSp_{4}(q)$ with $q>2$ even. Indeed, we prove that the groups $PSp_{4}(q)$ with $q>2$ even are uniquely determined by their orders and the set of the number of elements of the same order. This result links to the well-known J. G. Thompson's problem (1987) for finite simple groups.