论文标题
KOLOSOV-MUSKHELISHVILI压力正式主义的非线性扩展
Nonlinear extension of Kolosov-Muskhelishvili stress function formalism
论文作者
论文摘要
弹性理论中应力功能的方法是一种强大的分析工具,其应用在广泛的物理系统中,包括有缺陷的晶体,波动的膜等。一个复杂的坐标表达了应力功能的表述,称为Kolosov-Muskhelishvili形式主义,使得能够分析具有奇异域(尤其是裂纹)的弹性问题,从而构成了断裂力学的基础。这种方法的缺点是其对线性弹性的限制,该弹性假设钩态能量和线性应变度量。在有限载荷下,线性化应变无法充分描述变形场,反映了几何非线性的开始。后者在经历较大旋转的材料中很常见,例如靠近裂纹尖端或弹性超材料的区域。尽管存在非线性应力功能形式主义,但Kolosov-Muskhelishvili复合体的表示尚未推广,并且仍然限于线性弹性。本文为非线性应力功能开发了Kolosov-Muskhelishvili形式主义。新的形式主义使我们能够将方法从复杂的分析到非线性弹性,并解决单数领域中的非线性问题。在实施裂纹问题的方法后,我们发现非线性解决方案在很大程度上取决于施加的远程载荷,不包括靠近裂纹尖端的溶液的通用形式,并质疑先前的非线性裂纹分析研究的有效性。
The method of stress-function in elasticity theory is a powerful analytical tool with applications to a wide range of physical systems, including defective crystals, fluctuating membranes, and more. A complex coordinates formulation of stress function, known as Kolosov-Muskhelishvili formalism, enabled the analysis of elastic problems with singular domains, particularly cracks, forming the basis for fracture mechanics. A shortcoming of this method is its limitation to linear elasticity, which assumes Hookean energy and linear strain measure. Under finite loads, the linearized strain fails to describe the deformation field adequately, reflecting the onset of geometric nonlinearity. The latter is common in materials experiencing large rotations, such as regions close to the crack tip or elastic metamaterials. While a nonlinear stress function formalism exists, Kolosov-Muskhelishvili complex representation had not been generalized and remained limited to linear elasticity. This paper develops a Kolosov-Muskhelishvili formalism for nonlinear stress function. The new formalism allows us to port methods from complex analysis to nonlinear elasticity and to solve nonlinear problems in singular domains. Upon implementing the method to the crack problem, we discover that nonlinear solutions strongly depend on the applied remote loads, excluding a universal form of the solution close to the crack tip and questioning the validity of previous studies of nonlinear crack analysis.